Copied to
clipboard

?

G = C4215Q8order 128 = 27

2nd semidirect product of C42 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4215Q8, C43.17C2, C23.763C24, C425C4.20C2, C4.11(C422C2), (C22×C4).268C23, C22.184(C22×Q8), (C2×C42).1097C22, (C22×Q8).253C22, C23.67C23.66C2, C23.63C23.64C2, C2.C42.458C22, C23.65C23.91C2, C2.50(C23.37C23), C2.116(C23.36C23), (C2×C4).175(C2×Q8), (C2×C4).532(C4○D4), (C2×C4⋊C4).566C22, C2.27(C2×C422C2), C22.604(C2×C4○D4), SmallGroup(128,1595)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4215Q8
C1C2C22C23C22×C4C2×C42C43 — C4215Q8
C1C23 — C4215Q8
C1C23 — C4215Q8
C1C23 — C4215Q8

Subgroups: 324 in 204 conjugacy classes, 108 normal (9 characteristic)
C1, C2, C2 [×6], C4 [×4], C4 [×20], C22, C22 [×6], C2×C4 [×18], C2×C4 [×36], Q8 [×4], C23, C42 [×4], C42 [×12], C4⋊C4 [×18], C22×C4, C22×C4 [×14], C2×Q8 [×6], C2.C42 [×18], C2×C42, C2×C42 [×6], C2×C4⋊C4 [×9], C22×Q8, C43, C425C4 [×2], C23.63C23 [×6], C23.65C23 [×3], C23.67C23 [×3], C4215Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×12], C24, C422C2 [×4], C22×Q8, C2×C4○D4 [×6], C2×C422C2, C23.36C23 [×3], C23.37C23 [×3], C4215Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, dad-1=ab2, bc=cb, dbd-1=a2b-1, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 11 55 16)(2 12 56 13)(3 9 53 14)(4 10 54 15)(5 85 127 82)(6 86 128 83)(7 87 125 84)(8 88 126 81)(17 61 22 100)(18 62 23 97)(19 63 24 98)(20 64 21 99)(25 48 30 42)(26 45 31 43)(27 46 32 44)(28 47 29 41)(33 111 38 114)(34 112 39 115)(35 109 40 116)(36 110 37 113)(49 72 60 65)(50 69 57 66)(51 70 58 67)(52 71 59 68)(73 121 80 118)(74 122 77 119)(75 123 78 120)(76 124 79 117)(89 107 96 104)(90 108 93 101)(91 105 94 102)(92 106 95 103)
(1 49 41 98)(2 50 42 99)(3 51 43 100)(4 52 44 97)(5 102 110 122)(6 103 111 123)(7 104 112 124)(8 101 109 121)(9 70 26 17)(10 71 27 18)(11 72 28 19)(12 69 25 20)(13 66 30 21)(14 67 31 22)(15 68 32 23)(16 65 29 24)(33 75 83 95)(34 76 84 96)(35 73 81 93)(36 74 82 94)(37 77 85 91)(38 78 86 92)(39 79 87 89)(40 80 88 90)(45 61 53 58)(46 62 54 59)(47 63 55 60)(48 64 56 57)(105 113 119 127)(106 114 120 128)(107 115 117 125)(108 116 118 126)
(1 105 41 119)(2 103 42 123)(3 107 43 117)(4 101 44 121)(5 63 110 60)(6 99 111 50)(7 61 112 58)(8 97 109 52)(9 91 26 77)(10 95 27 75)(11 89 28 79)(12 93 25 73)(13 90 30 80)(14 94 31 74)(15 92 32 78)(16 96 29 76)(17 37 70 85)(18 33 71 83)(19 39 72 87)(20 35 69 81)(21 40 66 88)(22 36 67 82)(23 38 68 86)(24 34 65 84)(45 124 53 104)(46 118 54 108)(47 122 55 102)(48 120 56 106)(49 127 98 113)(51 125 100 115)(57 128 64 114)(59 126 62 116)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,11,55,16)(2,12,56,13)(3,9,53,14)(4,10,54,15)(5,85,127,82)(6,86,128,83)(7,87,125,84)(8,88,126,81)(17,61,22,100)(18,62,23,97)(19,63,24,98)(20,64,21,99)(25,48,30,42)(26,45,31,43)(27,46,32,44)(28,47,29,41)(33,111,38,114)(34,112,39,115)(35,109,40,116)(36,110,37,113)(49,72,60,65)(50,69,57,66)(51,70,58,67)(52,71,59,68)(73,121,80,118)(74,122,77,119)(75,123,78,120)(76,124,79,117)(89,107,96,104)(90,108,93,101)(91,105,94,102)(92,106,95,103), (1,49,41,98)(2,50,42,99)(3,51,43,100)(4,52,44,97)(5,102,110,122)(6,103,111,123)(7,104,112,124)(8,101,109,121)(9,70,26,17)(10,71,27,18)(11,72,28,19)(12,69,25,20)(13,66,30,21)(14,67,31,22)(15,68,32,23)(16,65,29,24)(33,75,83,95)(34,76,84,96)(35,73,81,93)(36,74,82,94)(37,77,85,91)(38,78,86,92)(39,79,87,89)(40,80,88,90)(45,61,53,58)(46,62,54,59)(47,63,55,60)(48,64,56,57)(105,113,119,127)(106,114,120,128)(107,115,117,125)(108,116,118,126), (1,105,41,119)(2,103,42,123)(3,107,43,117)(4,101,44,121)(5,63,110,60)(6,99,111,50)(7,61,112,58)(8,97,109,52)(9,91,26,77)(10,95,27,75)(11,89,28,79)(12,93,25,73)(13,90,30,80)(14,94,31,74)(15,92,32,78)(16,96,29,76)(17,37,70,85)(18,33,71,83)(19,39,72,87)(20,35,69,81)(21,40,66,88)(22,36,67,82)(23,38,68,86)(24,34,65,84)(45,124,53,104)(46,118,54,108)(47,122,55,102)(48,120,56,106)(49,127,98,113)(51,125,100,115)(57,128,64,114)(59,126,62,116)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,11,55,16)(2,12,56,13)(3,9,53,14)(4,10,54,15)(5,85,127,82)(6,86,128,83)(7,87,125,84)(8,88,126,81)(17,61,22,100)(18,62,23,97)(19,63,24,98)(20,64,21,99)(25,48,30,42)(26,45,31,43)(27,46,32,44)(28,47,29,41)(33,111,38,114)(34,112,39,115)(35,109,40,116)(36,110,37,113)(49,72,60,65)(50,69,57,66)(51,70,58,67)(52,71,59,68)(73,121,80,118)(74,122,77,119)(75,123,78,120)(76,124,79,117)(89,107,96,104)(90,108,93,101)(91,105,94,102)(92,106,95,103), (1,49,41,98)(2,50,42,99)(3,51,43,100)(4,52,44,97)(5,102,110,122)(6,103,111,123)(7,104,112,124)(8,101,109,121)(9,70,26,17)(10,71,27,18)(11,72,28,19)(12,69,25,20)(13,66,30,21)(14,67,31,22)(15,68,32,23)(16,65,29,24)(33,75,83,95)(34,76,84,96)(35,73,81,93)(36,74,82,94)(37,77,85,91)(38,78,86,92)(39,79,87,89)(40,80,88,90)(45,61,53,58)(46,62,54,59)(47,63,55,60)(48,64,56,57)(105,113,119,127)(106,114,120,128)(107,115,117,125)(108,116,118,126), (1,105,41,119)(2,103,42,123)(3,107,43,117)(4,101,44,121)(5,63,110,60)(6,99,111,50)(7,61,112,58)(8,97,109,52)(9,91,26,77)(10,95,27,75)(11,89,28,79)(12,93,25,73)(13,90,30,80)(14,94,31,74)(15,92,32,78)(16,96,29,76)(17,37,70,85)(18,33,71,83)(19,39,72,87)(20,35,69,81)(21,40,66,88)(22,36,67,82)(23,38,68,86)(24,34,65,84)(45,124,53,104)(46,118,54,108)(47,122,55,102)(48,120,56,106)(49,127,98,113)(51,125,100,115)(57,128,64,114)(59,126,62,116) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,11,55,16),(2,12,56,13),(3,9,53,14),(4,10,54,15),(5,85,127,82),(6,86,128,83),(7,87,125,84),(8,88,126,81),(17,61,22,100),(18,62,23,97),(19,63,24,98),(20,64,21,99),(25,48,30,42),(26,45,31,43),(27,46,32,44),(28,47,29,41),(33,111,38,114),(34,112,39,115),(35,109,40,116),(36,110,37,113),(49,72,60,65),(50,69,57,66),(51,70,58,67),(52,71,59,68),(73,121,80,118),(74,122,77,119),(75,123,78,120),(76,124,79,117),(89,107,96,104),(90,108,93,101),(91,105,94,102),(92,106,95,103)], [(1,49,41,98),(2,50,42,99),(3,51,43,100),(4,52,44,97),(5,102,110,122),(6,103,111,123),(7,104,112,124),(8,101,109,121),(9,70,26,17),(10,71,27,18),(11,72,28,19),(12,69,25,20),(13,66,30,21),(14,67,31,22),(15,68,32,23),(16,65,29,24),(33,75,83,95),(34,76,84,96),(35,73,81,93),(36,74,82,94),(37,77,85,91),(38,78,86,92),(39,79,87,89),(40,80,88,90),(45,61,53,58),(46,62,54,59),(47,63,55,60),(48,64,56,57),(105,113,119,127),(106,114,120,128),(107,115,117,125),(108,116,118,126)], [(1,105,41,119),(2,103,42,123),(3,107,43,117),(4,101,44,121),(5,63,110,60),(6,99,111,50),(7,61,112,58),(8,97,109,52),(9,91,26,77),(10,95,27,75),(11,89,28,79),(12,93,25,73),(13,90,30,80),(14,94,31,74),(15,92,32,78),(16,96,29,76),(17,37,70,85),(18,33,71,83),(19,39,72,87),(20,35,69,81),(21,40,66,88),(22,36,67,82),(23,38,68,86),(24,34,65,84),(45,124,53,104),(46,118,54,108),(47,122,55,102),(48,120,56,106),(49,127,98,113),(51,125,100,115),(57,128,64,114),(59,126,62,116)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
001000
000400
000023
000003
,
100000
010000
003000
000200
000030
000003
,
010000
400000
004000
000400
000040
000004
,
200000
030000
000100
001000
000023
000043

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,3,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,3,3] >;

44 conjugacy classes

class 1 2A···2G4A···4AB4AC···4AJ
order12···24···44···4
size11···12···28···8

44 irreducible representations

dim11111122
type++++++-
imageC1C2C2C2C2C2Q8C4○D4
kernelC4215Q8C43C425C4C23.63C23C23.65C23C23.67C23C42C2×C4
# reps112633424

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{15}Q_8
% in TeX

G:=Group("C4^2:15Q8");
// GroupNames label

G:=SmallGroup(128,1595);
// by ID

G=gap.SmallGroup(128,1595);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,568,758,184,2019,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽